

HER Red / Green GMA3688C (BI-COLOR)

PACKAGE DIMENSIONS

37.9 (1.49) 29.94 (1.10) 64 X #3.7 (0.15)

DESCRIPTION

The GMA3688C a common cathode column 8 X 8, bicolor High Efficiency Red / green dotmatrix display. It has a grey face with neutral segment color.

FEATURES

1.5" (37.9mm) character height. Low power requirement. Wide 130° viewing angle. High brightness and contrast 8 X 8 array with X-Y select. X-Y stackable. Easy mounting on P.C. board.

NOTE:

Dimensions are in mm (inch). Tolerances are \pm 0.25 (0.1) unless otherwise noted. All pins are 0.5 (.02).

MODEL NUMBER

Part Number

Colour

Description

GMA3688C

HER Red/Green

Common anode row.

(For other color options, contact your local area Sales Office)

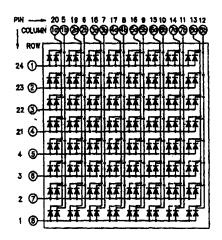
ABSOLUTE MAXIMUM RATING (T_A = 25°C unless otherwise specified)

	HER	Green	Units
Peak forward current per segment	90	90	mA
(Duty cycle 1/10, 10KHz)			
Continous IF per segment	25	25	mA
Power dissipation per segment	70*	70*	mW
*Derate linearly from 25°C	0.33	0.33	mW/°C
Reverse voltage VR per segment	5	5	Volts
Operating and storage temperature ra	ange		25°C to +85°C
Soldering time at 260°C			
(1/16" below seating plane)			

ELECTRO - OPTICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

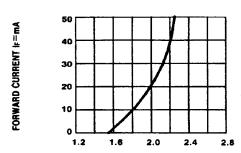
	HER	Green	Test Condition
Luminous Intensity/Dot			
Digit average (Typical)	2200ucd	1600ucd	I _F = 20mA
Forward voltage (V _F)			•
typical	2.0V	2.1V	$I_F = 20 \text{ mA}$
maximum	2.8V	2.8V	$I_F = 20 \text{ mA}$
Peak wavelength (nm)	635nm	570nm	$l_F = 20 \text{ mA}$
Spectral line half width (nm)	45nm	30nm	$I_F = 20mA$
Reverse breakdown voltage V _R	5V	5V	I _R = 100uA

P	IN	CO	N	1EC	CTI	٩O	J:
						•	

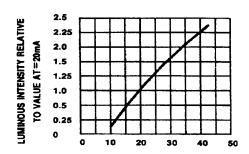

GMA3688C

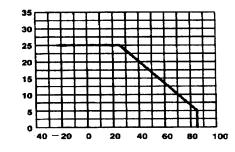
Pin Number	Function	Pin Number	Function
1	Anode Row 8	13	Cathode Column 8a
2	Anode Row 7	14	Cathode Column 7a
3	Anode Row 6	15	Cathode Column 6a
4	Anode Row 5	16	Cathode Column 5a
5	Cathode Column 1b	17	Cathode Column 4a
6	Cathode Column 2b	18	Cathode Column 3a
7	Cathode Column 3b	19	Cathode Column 2a
8	Cathode Column 4b	20	Cathode Column 1a
9	Cathode Column 5b	21	Anode Row 4
10	Cathode Column 6b	22	Anode Row 3
11	Cathode Column 7b	23	Anode Row 2
12	Cathode Column 8b	24	Anode Row 1

Note "a" = High Efficiency Red LED

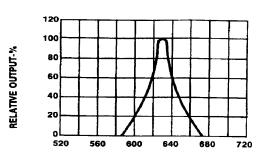

"b" = Green LED

SCHEMATIC:

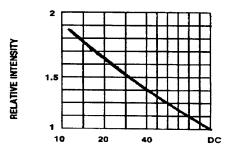



GRAPHICAL DETAIL: High Efficiency Red (T_A = 25°C unless otherwise specified)

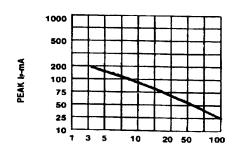
FORWARD VOLTAGE (Vr)-VOLTS
FIG.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



Ir-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

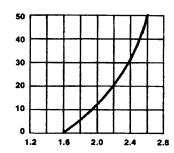


DCMAX-MAXIMUM DC CURRENT-MA

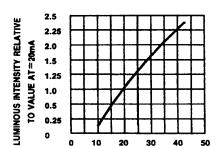

TA AMBIENT TEMPERATURE C Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT VS. A FUNCTION OF AMBIENT TEMPERATURE.

WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

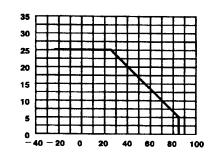
DUTY CYCLE % PER SEGMENT
(AVERAGE I=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE



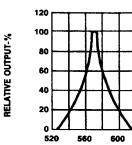
DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE (=1 KHz)



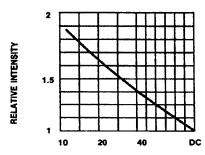
GRAPHICAL DETAIL: Green (T_A = 25°C unless otherwise specified)



FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



IF-FORWARD CURRENT-MA
FIG.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT



TA AMBIENT TEMPERATURE ©
FIG.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT CS. A FUNCTION OF AMBIENT
TEMPERATURE.

WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

DUTY CYCLE % PER SEGMENT
(AVERAGE Is=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE f=1 KHz)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.